Computer Aided Design (CAD)

Lecture 12

Matlab Applications

Dr.Eng. Basem ElHalawany

Schedule (Updated 28-10)

Topics		Estimated Duration (# Lectures)
Introduction		1
Introduction to Matlab Environment		1
Matlab Programing (m-files)	(1)	5
Modeling using Matlab Simulink Tool	(1)	3
Midterm		7 th Week
Communication Systems Simulation (Applications)		3 (2/3)
Introduction to FPGA + Review on Digital Logic/Circuits		2
VHDL Modeling Language		4
VHDL Application		2
Introduction to OPNET Network Simulator (Projects)		2
Course Closeout / Feedback/ project (s) Delivery		1

Application (1)

Modeling of Electronic Devices (Example: Modeling of the I-V Characteristics of Diode)

Current Through a Diode The current flowing through the semiconductor diode shown in Figure is given by the equation

$$i_D = I_0 \left(e^{\frac{qv_o}{kT}} - 1 \right)$$

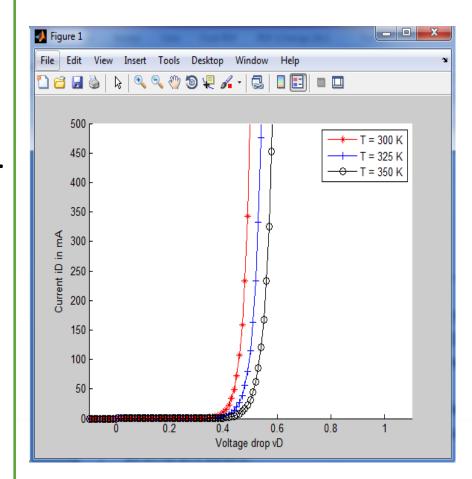
where i_D = the voltage across the diode, in volts

 v_D = the current flow through the diode, in amps

 I_0 = the leakage current of the diode, in amps

q = the charge on an electron, 1.602×10^{-19} coulombs

 $k = \text{Boltzmann's constant}, 1.38 \times 10^{-23} \text{ joule/K}$


T = temperature, in kelvins (K)

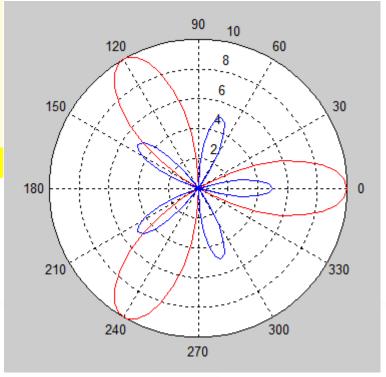
3

Application (1)

- The leakage current IO of the diode is 2.0 mA.
- Write a program to calculate the current flowing through this diode for all voltages from - 0.2 V to 1.5 V, in 0.01 V steps.
- Repeat this process for the following temperatures: 300, 325, and 350 °K
- Create a plot of the current as a function of applied voltage, with the curves for the three different temperatures appearing as different colors.

Application (1)

```
%% Initialization
 close all; clear all; clc
    I0 = 2*(10^{(-6)}); % The leakage current of the diode, in amps
    q = 1.602*(10^{(-19)}); % Electron Charge
    K = 1.38*(10^{(-23)}); % Boltzmann's constant
 %% Parameters
    T = [300 325 350]; % Temperature in Kelvin
    vD = -0.1:0.01:1.2; % voltage difference on the diode
    vT = K*T/\alpha
 %% Calculating Current Calculation for different voltages and
 iD = zeros(length(T),length(vD));
□ for Tctr = 1: length(T)
     for Vctr = 1: length(vD)
          iD(Tctr,Vctr) = I0 *(exp((q*vD(Vctr))/(K*T(Tctr)))-1);
     end
 end
 %% Plotting
 figure; hold on;
   plot(vD,iD(1,:),'-*r')
   plot(vD,iD(2,:),'-+b')
   plot(vD,iD(3,:),'-ok')
 LEGEND1 = 'T = 300 \text{ K}'; LEGEND2 = 'T = 325 \text{ K}'; LEGEND3 = 'T = 350 \text{ K}';
 legend(LEGEND1, LEGEND2, LEGEND3);
```


Application (2) Polar Plot

 \triangleright Plot the functions of r1= 10 cos(3 Θ) and r2= 5 cos(5 Θ)

for $0 \le \Theta \le 2\pi$ using a polar plot

Application (2)

Application (3) Loading data from a file for processing

Examples:

- ECG Signals
- Audio Signals

